If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+5b-25=0
a = 1; b = 5; c = -25;
Δ = b2-4ac
Δ = 52-4·1·(-25)
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{5}}{2*1}=\frac{-5-5\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{5}}{2*1}=\frac{-5+5\sqrt{5}}{2} $
| 3(6+2x)=8(5x+6)-4 | | 12y-11y-y+5y-1=19 | | 3x-3=4x=1 | | 14y-9y-12=53.25 | | (4n+8)=60 | | -2y+3=8y-6 | | x-13/3=15 | | 10-4y=7y+21 | | 8x+16=289 | | 10x^2+11x=0 | | 9x-6x+3=3(x+1) | | 9/7y-14=-5 | | 12r+24-5r=3 | | 12d+4d-13d-3=3 | | 7x+35=110 | | 7x-7=8x-12 | | m+5/9-6=2m-1/3-1/9 | | 8⋅=(n÷3)⋅ | | 14c-13c-c+4c+1=13 | | 13+2=-5(4x-3) | | x+(0.15x)=5.49 | | 6v-3v+6v-1=8 | | -5+v=9 | | 13q-12q-q+2q=20 | | 20x-260=20x-140 | | -18+58=-5(x+2) | | 5x=240-2x | | 11k+3k-11k-3=6 | | 5/8+b=-3/4 | | 0=-16^2+40t+5 | | 11c-4c=14 | | 25=5r-7 |